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Abstract

The elastodynamic response of a layered isotropic plate to a source point load having an arbitrary
direction is studied in this paper. A decomposition technique is developed within each homogeneous
isotropic lamina to simplify the general three-dimensional plane-wave propagation problem as a separate
plane-strain problem and an anti-plane-wave propagation problem. The accuracy of computation is
assured by cross-checking the numerical results by different methods. Results are checked numerically for a
vertical point load acting on a homogeneous and a layered plate by using a hybrid method. On the other
hand, results are checked for a horizontal point load by using dynamic reciprocal identities. Results are
presented for both a homogeneous as well as a layered plate.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Wave propagation in an infinite, elastic plate has been studied since the last century. Practical
applications include the ultrasonic non-destructive evaluation of defects and the characterization
of a material’s properties. Two different approaches have been generally employed. One is a wave
spectra analysis based on the frequency equation and the other involves fundamental
elastodynamic solutions arising from the Green function which correspond to a structure’s
dynamic responses to a source load. It is envisioned that a Green function is essential for applying
the boundary element method (BEM) to study the effects of cracks and other flaws in a plate.
The elastodynamic Green function for a homogeneous isotropic plate has been investigated for

many years. See, for example, the comprehensive literature review by Miklowitz [1]. Most
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previous studies deal with two-dimensional problems (i.e., the plane-strain or plane-stress cases).
Weaver and Pao [2], for instance, studied the dynamic response of an isotropic plate to a vertical
load in which axisymmetry holds. Fundamental three-dimensional transient solutions, on the
other hand, have been developed by Ceranoglu and Pao [3]. Their analysis is based on a
generalized ray theory and Cagniard’s method. The latter is used to invert the double transform
arising in the solution. In the generalized ray method, however, only a finite number of rays are
presumed to be important at some finite instant. However, many rays have to be considered in
practice so that numerical calculations are tedious for late instants. The transient solution to an
embedded dislocation can be found in Vasudevan and Mal [4]. They employed an integral
transform technique.
The dynamic response due to a source load in an anisotropic plate has also been reported in the

literature. For example, two-dimensional transient wave propagation in an anisotropic plate
caused by a line load was studied by Scott and Miklowitz [5,6] as well as by Willis and Bedding [7].
Green and Green [8] and Green [9,10] investigated the transient stresses in a four-ply fiber-
composite plate for both inextensible and extensible fibers. Their solution was based on the
contributions of solely the propagating modes. Liu et al. [11] proposed a hybrid numerical method
to compute the transient waves propagating in a laminated anisotropic plate from a short
duration line load and a vertical point load. The displacement response was determined by
employing a Fourier transform and modal analysis. However, only 10 modes were considered in
their computation. Zhu et al. [12] and Zhu and Shah [13] presented a modal representation of the
plane-strain, elastodynamic Green function for laminated composite plates. Contributions from
all the modes gave accurate results in both the near and far fields. Recently, the axisymmetric
transient dynamic response in a transversely isotropic plate was found by Weaver et al. [14]. In a
fundamental three, rather than two-dimensional solution, Mal and Lih [15] as well as Xu and Mal
[16,17] employed a wave number integral approach to find the elastodynamic response of a
unidirectional composite plate to a vertical point load or a line load. However, the wave number
integral requires complex integration. To the authors’ knowledge, no efficient numerical method
has been derived to compute the three-dimensional Green function.
Attention is devoted in this paper to a modal representation of the three-dimensional,

elastodynamic Green function in a layered isotropic plate due to a source point load which may be
oriented arbitrarily. The plate is composed of perfectly bonded lamina, each of which has a
distinct thickness as well as isotropic material properties. For each isotropic lamina, the three-
dimensional, plane-wave propagation problem is decomposed into a plane-strain problem in
addition to a separate anti-plane problem. The complexities of an arbitrarily laminated profile are
circumvented for the layered plate by employing finite element modelling in the thickness
direction (Dong and Huang [18]) to determine the wave modes. For a plane-wave, the wave modes
are obtained by using eigendata extracted from two independent algebraic eigensystems; one for
the plane-strain problem and the other for the anti-plane problem. Explicit forms of the Green
function are constructed by first summing the wave modes of a plane-wave and then superposing
the plane-wave solutions in the circumferential direction. The procedure detailed here will be
designated as a plane-wave superposition technique. A similar procedure can also be used to
construct the Green function for laminated composite plates.
As a cross check, the axisymmetric Green function of a homogeneous as well as layered plate

excited by a vertical point load is derived by using a hybrid model. In the hybrid model, a finite
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element representation is employed in the vicinity of the point load (i.e., in the interior region)
whilst a wave function expansion is used in the exterior region. It is shown that the numerical
results from the proposed method and the hybrid method are in very good agreement. The hybrid
method presented here cannot be applied to the case of a horizontal point load since axisymmetry
does not hold. However, a cross check is performed by considering the dynamic reciprocal
relation. The numerical results are in excellent agreement.

2. Formulation

The time-harmonic elastic wave propagation in an infinite, laminated isotropic plate is
considered next. The laminated plate has perfectly bonded isotropic laminas that are separate
entities, each enjoying distinct mechanical properties and thicknesses. The two outer surfaces of
the plate are considered to be traction free with a separation of 2H. Assume that the waves travel
in the x0 direction, which has an angle f to the x direction of the global ðx; y; zÞ co-ordinate system
shown in Fig. 1. The three-dimensional, time-harmonic wave motion equation for each isotropic
lamina can be written in the frequency domain as

mr2uþ ðlþ mÞrðrduÞ þ ro2uþ b ¼ 0; ð1Þ

where l and m are Lame’s constants, r is the mass density and o is the circular frequency.
Moreover,

r ¼
@

@x
;
@

@y
;
@

@z

� �T

; r2 ¼
@2

@x2
þ

@2

@y2
þ

@2

@z2
; ð2Þ

and

u ¼ u; v;wð ÞT; b ¼ bx; by; bz

� �T
; ð3Þ
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Fig. 1. Plate configuration.
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where u; v; and w represent the displacements whilst bx; by; and bz correspond to the body forces in
the x; y and z directions, respectively.

2.1. Construction of 3-D Green function

This section presents a modal representation of the three-dimensional time-harmonic Green
function due to an arbitrarily oriented load in a layered isotropic plate.

2.1.1. Discrete equations of motion

A semi-analytical finite element method is used to formulate the governing equations. With this
method, the x and y dependencies of u are accommodated by means of an analytical double
integral Fourier transform, with the z dependence approximated by using finite elements. Then,
by employing a proper co-ordinate transformation, the three-dimensional problem can be
decomposed into a plane-strain problem and an anti-plane problem in the direction of the
travelling waves. The Fourier transform employs transform pairs that are defined in terms of the
wave numbers in the x and y directions, kx and ky; respectively, i.e.,

*fðkx; ky; zÞ ¼
Z

N

�N

Z
N

�N

f ðx; y; zÞe-iðkxxþkyyÞdx dy; ð4Þ

and

f ðx; y; zÞ ¼
1

ð2pÞ2

Z
N

�N

Z
N

�N

*fðkx; ky; zÞeiðkxxþkyyÞdkx dky; ð5Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
:Next, define k as a wave number in the x0 direction which is oriented at angle f to

the x axis (see Fig. 1). Then the wave numbers kx and ky in the x and y directions, respectively, are
given by

kx ¼ k cos f and ky ¼ k sin f: ð6Þ

After applying the Fourier transform (4) to Eq. (1) and making the co-ordinate transform from
the ðx; y; zÞ to the ðx0; y0; zÞ co-ordinates, Eq. (1) can be rewritten as

m
d2 *u0

dz2
� ðlþ 2mÞk2 *u0 þ iðlþ mÞk

d *w0

dz
þ ro2 *u0 þ *b0

x0 ¼ 0; ð7Þ

ðlþ 2mÞ
d2 *w0

dz2
� mk2 *w0 þ iðlþ mÞk

d *u0

dz
þ ro2 *w0 þ *b0

z ¼ 0; ð8Þ

m
d2 *v0

dz2
� mk2 *v0 þ ro2 *v0 þ *b0y0 ¼ 0: ð9Þ

Here the prime quantities are referenced to the ðx0; y0; zÞ co-ordinates. Eqs. (7) and (8) describe a
plane-strain problem in the x0 � z plane. Eq. (9), on the other hand, represents an independent
anti-plane problem in which waves travel in the x0 direction. Consequently, the three-dimensional
wave propagation problem in isotropic plates is decomposed into separate plane-strain and anti-
plane problems. This decomposition is important because a complicated three-dimensional
problem is solved by merely superimposing the solutions of two simpler problems having lower
dimensions. Moreover, the plane-strain wave propagation problem has been investigated already
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by efficiently using two-dimensional elastodynamic Green functions in a modal representation
[12,19].
To solve the plane-strain and anti-plane problems that are defined by Eqs. (7)–(9), the

z-dependence is found by using the finite element modelling detailed by Dong and Huang [18] (but
not reproduced here). The approach starts by discretizing each lamina into several sublayers so
that the total number of sublayers over the plate’s thickness, 2H, is N. The displacement
distributions through the thickness of each sublayer are approximated by employing quadratic
functions of a (variable) thickness. The generalized co-ordinates correspond to the nodal
displacements at the top, middle and bottom surfaces of each sublayer. Thus, the total number of
nodes through the thickness of the plate is (2N þ 1). Then, by using a conventional finite element
procedure, the discretized governing equations over the complete thickness profile of the plate can
be derived for the plane-strain and anti-plane problems as

ðk2
pKp1 � ikpKp2 þ Kp3 � o2MpÞ *Qp ¼ *Fx0z; ð10Þ

and

ðk2
aKa1 þ Ka3 � o2MaÞ *Qa ¼ *Fy0 : ð11Þ

Subscripts p and a indicate the plane-strain and anti-plane problems, respectively. Kpi; Kai; Mp

andMa are the corresponding assembled global stiffness and mass matrices for all the lamina. On
the other hand, *Qp ¼ ð *U

0T
; *W

0T
ÞTand *Qa ¼ *V

0
; as well as *Fx0z and *Fy0 represent the total (global)

nodal displacement and traction vectors in the transformed domain, respectively. The size of each
stiffness and mass matrices is Mp � Mp for the plane-strain problem and Ma � Ma for the anti-
plane problem. Consequently, the size of the nodal displacement and traction vectors is Mp for the
plane-strain problem and Ma for the anti-plane problem where Mp ¼ 2ð2N þ 1Þ and Ma ¼
2N þ 1: Note that Kp1; Kp3; Ka1; Ka3; Mp and Ma are symmetric but Kp2 is antisymmetric.

2.1.2. Eigenvalue problems and modal summations
The first step in solving Eqs. (10) and (11) is to consider the homogeneous equations, which

have the form of a two-parameter, algebraic eigensystem corresponding to the parameters o and
kp or ka: The kp or ka is adopted as the eigenvalue parameter when specific values are assigned, as
here, to o: The quadratic eigenproblems, corresponding to Eq. (10) for kp and Eq. (11) for ka; can
be recast into the first order form

ApðoÞ � kpBp

� 	
*Dp ¼ *Pp and AaðoÞ � kaBa½ 
 *Da ¼ *Pa; ð12Þ

where

ApðoÞ ¼
0 I

Kp3 � o2Mp �iKp2

" #
; Bp ¼

I 0

0 �Kp1

" #
;

AaðoÞ ¼
0 I

Ka3 � o2Ma 0

" #
; Ba ¼

I 0

0 �Ka1

" #
; ð13Þ
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*Dp ¼ð *Q
T

p ; kp
*Q
T

p Þ
T; *Pp ¼ ð 0 *FT

x0z Þ
T;

*Da ¼ð *Q
T

a ; ka
*Q
T

a Þ
T; *Pa ¼ ð 0 *F

T

y0
ÞT; ð14Þ

and I is an identity matrix.
Note that the linear transformations of Eqs. (10)–(12) double the dimensions of the displacement

vectors in both problems. By setting *Pp ¼ 0 and *Pa ¼ 0; two sets of general eigenvalue problems
are obtained in terms of the eigenvalues (denoted as kpm and kam), the associated left eigenvectors,
fL

pm and fL
am; and the right eigenvectors, fR

pm and fR
am: The resulting two linear eigenvalue

problems become

½ApðoÞ � kpmBp
f
R
pm ¼ 0; ½AT

p ðoÞ � kpmB
T
p 
f

L
pm ¼ 0;

½AaðoÞ � kamBa
f
R
am ¼ 0; AT

a ðoÞ � kamB
T
a

� 	
fL

am ¼ 0: ð15Þ

According to Eq. (14), the right and left eigenvectors can be partitioned into upper and lower
halves as

fR
pm ¼

fR
pmu

fR
pml

( )
¼

*Q
R

pm

kpm
*Q

R

pm

8<
:

9=
;; fL

pm ¼
fL

pmu

fL
pml

( )
¼

*Q
L

pm

kpm
*Q

L

pm

8<
:

9=
;;

fR
am ¼

fR
amu

fR
aml

( )
¼

*Q
R

am

kam
*Q

R

am

8<
:

9=
;; fL

am ¼
fL

amu

fL
aml

( )
¼

*Q
L

am

kam
*Q

L

am

8<
:

9=
;: ð16Þ

It may be noted that, for a particular value of o, Eq. (15) will have both real and com-
plex roots for kp or ka: The real (complex) roots correspond to propagating (evanescent)
modes.
By following the modal summation technique of Liu et al. [11], as well as Liu and Achenbach

[20], and applying the orthogonality conditions of the left and right eigenvectors, the displacement
vectors for the plane-strain and anti-plane problems in the transformed domain,
*Qp ¼ ð *U

0T
; *W

0T
ÞTand *Qa ¼ *V

0
; are constructed as

*U
0

*W
0

( )
¼

X2Mp

m¼1

ðfL
pmlÞ

T *Fx0z

ðkpm � kpÞBpm

*U
0
m

*W
0
m

( )
; ð17Þ

*V
0
¼

X2Ma

m¼1

ðfL
amlÞ

T *Fy0

ðkam � kaÞBam

*V
0
m; ð18Þ

where

Bpm ¼ ðfL
pmuÞ

TfR
pmu � ðfL

pmlÞ
TKp1f

R
pml ;

Bam ¼ ðfL
amuÞ

TfR
amu � ðfL

amlÞ
TKa1f

R
aml : ð19Þ
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Moreover ð *U
0
mT; *W

0
mTÞ

T ¼ *Q
R

pm and *V
0
m ¼ *Q

R

am are the upper half of the eigenvectors
corresponding to the eigenvalues kpm and kam for the plane-strain and anti-plane problems,
respectively.

2.1.3. The Green function
A steady-state unit load is located, without loss of generality, at the origin of a plane, distance

z0 from the plate’s top exterior surface, in order to construct the Green function. The spatial
representation of this load, fðx; yÞ; takes the form

fðx; yÞ ¼ f0dðxÞdðyÞ; ð20Þ

where

f0 ¼ ðfx; fy; fzÞ
T ð21Þ

represents the amplitude of the load in the x, y and z directions, respectively. Applying Fourier
transform (4) to Eq. (20) gives the load, in the transformed domain, as

*f ¼ f0: ð22Þ

Now *f can be expressed in the ðx0; y0; zÞ co-ordinate system as

*f
0
¼

fx0

fy0

fz

8><
>:

9>=
>; ¼

fx cosfþ fy sin f

�fx sin fþ fy cosf

fz

8><
>:

9>=
>;: ð23Þ

Therefore, in the finite element formulation, the corresponding external nodal force vectors for
the plane-strain and anti-plane problems, *Fx0z and *Fy0 ; respectively, contain zero entries except at
the load’s nodal surface z ¼ z0: The ðx0; y0; zÞ components in the plane-strain and anti-plane
problems are ðfx0 ; fzÞ and fy0 ; respectively, so that,

*F
0
x0z ¼ ð0;y; 0; fx0 ; 0y; 0; 0;y; 0; fz; 0;y; 0ÞT; ð24Þ

and

*F
0
y0 ¼ ð0;y; 0; fy0 ; 0y; 0ÞT: ð25Þ

2.1.3.1. Load in the z direction. In view of Eqs. (23)–(25) as well as Eqs. (17) and (18), a unit load
in the z direction, *f

0
¼ ð0; 0; 1ÞT; applied at ð0; 0; z0Þ gives

ðfL
pmlÞ

T *F
0
x0z ¼ czp; ðfL

amlÞ
T *F

0
y0 ¼ 0: ð26Þ

Here, czp corresponds to the element, fL
pml ; for the plane-strain problem. It should be noted that,

in this case, the displacements have no contribution from the anti-plane problem.
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By means of Eqs. (17) and (18), the nodal displacement vector in the transformed domain can
be written in the cylindrical co-ordinate system ðr; y; zÞ illustrated in Fig. 1 as

*Ur

*Uy

*W

8><
>:

9>=
>; ¼

X2Mp

m¼1

czp

ðkpm � kpÞBpm

*U
0
m cosðf� yÞ

*U
0
m sinðf� yÞ

*W
0
m

8>><
>>:

9>>=
>>;: ð27Þ

Applying the inverse Fourier transform (5) to Eq. (27) gives the displacements in the spatial
domain as [21]

Ur

Uy

W

8><
>:

9>=
>; ¼

1

ð2pÞ2

Z Z
ðkp;fÞ

*Ur

*Uy

*W

8><
>:

9>=
>;eikpr cosðf�yÞkpdkp df

¼ �
1

ð2pÞ2

Z Z
ðkp;fÞ

X2Mp

m¼1

czp

Bpm

1þ
kpm

kp � kpm

� � *U
0
m cosðf� yÞ

*U
0
m sinðf� yÞ

*W
0
m

8>><
>>:

9>>=
>>;eikpr cosðf�yÞdkp df: ð28Þ

Zhu and Shah [13] demonstrated that only half the 2Mp modes associated with the
waves propagating from the source towards the field points are relevant to the plane-
strain problem. Therefore, by introducing j ¼ f� y; ð�p=2pjpp=2Þ; Eq. (28) can be re-
written as

Ur

Uy

W

8><
>:

9>=
>; ¼ �

1

ð2pÞ2

Z p=2

�p=2

XMp

m¼1

czp

Bpm

Z
N

�N

eikpr cos j dkp þ
Z

N

�N

kpm

kp � kpm

eikpr cos j dkp

� � *U
0
m cosj

*U
0
m sinj

*W
0
m

8>><
>>:

9>>=
>>; dj:

ð29Þ

By employing the definition of the Delta function,

1

2p

Z
N

�N

eikr cos jdk ¼ dðr cosjÞ; ð30Þ

and applying Cauchy’s residue theorem to the last integral in Eq. (29), it can be shown
that

Ur

Uy

W

8><
>:

9>=
>; ¼ �

1

2p

XMp

m¼1

czp

Bpm

Z p=2

�p=2
½dðr cosjÞ þ ikpme

ikpmr cos j


*U
0
m cosj

*U
0
m sin j

*W
0
m

8>><
>>:

9>>=
>>;dj: ð31Þ

Note that the eigenvalues and associated eigenvectors affected by the isotropic material’s
properties (which are independent of f) are incorporated in the derivation of Eq. (31).
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By using the properties of the Delta function (see Hsu [22, appendix]), Eq. (31) can be simplified
to

Ur

Uy

W

8><
>:

9>=
>; ¼

1

2

XMp

m¼1

czp

Bpm

kpm
#H1ðkpmrÞ *U

0
m

0

½ 2pr
� ikpm

#H0ðkpmrÞ
 *W
0
m

8>><
>>:

9>>=
>>;: ð32Þ

It should be noted that the #Hn in Eq. (32) are not Hankel functions. They take the form

#HnðkpmrÞ ¼
e�np=2

p

Z p=2

�p=2
eikpmr cos jþinj dj: ð33Þ

2.1.3.2. Load in the x direction. As before, a unit load in the x direction, *f
0
¼ ð1; 0; 0ÞT; is applied

at ð0; 0; z0Þ so that

ðfL
pmlÞ

T *F
0
x0z ¼ cxp cosf and ðfL

amlÞ
T *F

0
y0 ¼ �cxa sin f; ð34Þ

where cxp and cxa represent corresponding elements in the vectors fL
pml and fL

aml for the plane-
strain and anti-plane problems, respectively.
In view of Eqs. (17) and (18), the nodal displacement vector in the transformed domain can be

given in the cylindrical co-ordinate system ðr; y; zÞ as

*Ur

*Uy

*W

8><
>:

9>=
>; ¼

X2Mp

m¼1

cxp

ðkpm � kpÞBpm

*U
0
m cosf cosðf� yÞ

*U
0
m cosf sinðf� yÞ

*W
0
m cosf

8>><
>>:

9>>=
>>;�

X2Ma

m¼1

cxa

ðkam � kaÞBam

� *V
0
m sin f sinðf� yÞ

*V
0
m sinf cosðf� yÞ

0

8>><
>>:

9>>=
>>;:

ð35Þ

Following the manipulations used to derive the Green function for a load in the z direction, the
Green function due to a load in the x direction can be found similarly to be

Ur

Uy

W

8><
>:

9>=
>; ¼ �

1

2

XMp

m¼1

cxp

Bpm

ikpm

2
½ #H0ðkpmrÞ � #H2ðkpmrÞ
 cos y *U

0
m

2
pr
siny� ikpm

2
½ #H0ðkpmrÞ þ #H2ðkpmrÞ


n o
sin y *U

0
m

kpm
#H0ðkpmrÞ cos y *W

0
m

8>>><
>>>:

9>>>=
>>>;

�
1

2

XMp

m¼1

cxa

Bpm

� 2
pr
þ ikpm

2
½ #H0ðkamrÞ þ #H2ðkamrÞ


n o
sin y *V

0
m

�ikpm

2 ½ #H0ðkamrÞ þ #H2ðkamrÞ
 sin y *V
0
m

0

8>><
>>:

9>>=
>>;: ð36Þ

The Green function due to a load in the y direction, on the other hand, can be obtained by simply
interchanging sin y and cos y and changing the sign of uy in Eq. (36).
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2.2. Hybrid model for axisymmetric case

To check the previously formulated modal representation, a hybrid model (Zhu et al. [12]) is
proposed for constructing the simpler axisymmetric Green function arising from a load in the z
direction. Then the analytical formulation of the frequency equation and wave functions (Weaver
and Pao [2]) is recast to study the outgoing, circular-crested waves travelling in a homogeneous
isotropic plate. On the other hand, axisymmetric finite element modelling is employed in the
vicinity of the point load. For the adopted cylindrical co-ordinate system ðr; y; zÞ shown in Fig. 1,
the time-harmonic solutions to Eq. (1) can be expressed, for a homogeneous isotropic plate having
no body forces, as

ur ¼ Uðz0ÞH ð1Þ
1 ðkrÞ; uz ¼ W ðz0ÞH ð1Þ

0 ðkrÞ: ð37Þ

Here, z0 ¼ z � H; k is the wave number and H
ð1Þ
0 ðkrÞ; H

ð1Þ
1 ðkrÞ are Hankel functions of the first

kind. The wave functions through the thickness are

Uðz0Þ ¼ kð�B sin az0 þ Cb sin bz0Þ and W ðz0Þ ¼ aB cos az0 þ Ck2 cos bz0 ð38Þ

for the antisymmetric modes, and for the symmetric modes,

Uðz0Þ ¼ �kðA cos az0 þ D bcos bz0Þ and W ðz0Þ ¼ �aA sin az0 þ Dk2b sin bz0; ð39Þ

with

a2 ¼ o2=c2p � k2; b2 ¼ o2=c2s � k2; ð40Þ

where cp and cs are the longitudinal and shear wave speeds, respectively.
For a homogeneous plate, the amplitude relations and frequency equations can be obtained by

satisfying the traction free conditions on the exterior surfaces of the plate. Consequently

B

C
¼

2bk2 sin bH

ðk2 � b2Þ sin aH
;

A

D
¼

�2bk2 cos bH

ðk2 � b2Þ cos aH
; ð41Þ

ðk2 � b2Þsin aH cos bH þ 4abk2 cos aH sin bH ¼ 0; ð42Þ

for the antisymmetric modes, and

ðk2 � b2Þcos aH sin bH þ 4abk2 sin aH cos bH ¼ 0; ð43Þ

for the symmetric modes. Eqs. (42) and (43) are identical to the Rayleigh–Lamb frequency
equations for straight-crested waves that occur under plane-strain conditions. For a given o, these
two equations serve as implicit transcendental functions of k whose solutions give the wave
numbers. The corresponding wave functions can be computed from Eqs. (38) and (39).
Propagator matrices are used to construct the wave modes described by Zhu et al. [12] for a
layered plate.
A hybrid method is employed to compute the axisymmetric Green function of an isotropic plate

as well as a layered plate due to a vertical point load applied at ð0; 0; z0Þ: Then the plate is divided
into exterior and interior regions by using a cylindrical surface having radius r0, as illustrated in
Fig. 2. Formulations appropriate to each of these regions are detailed next.
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Fig. 2. The interior and exterior regions.
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Fig. 3. Vertical load induced vertical displacements for a homogeneous plate when O ¼ 1: (a) x ¼ 2H, and (b) x ¼ 10H

(–––, ReðwÞ from hybrid method; - - - -, ImðwÞ from hybrid method; D; ReðwÞ from superposition method; o; ImðwÞ from
superposition method).
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2.2.1. Wave function expansion in the exterior region

The plate is divided into N sublayers in the exterior region in order to evaluate the wave
functions given by Eqs. (38) and (39). The displacement field is represented by a modal summation
involving a finite number ðMp ¼ 2ð2N þ 1ÞÞ of modes in the form

Ur ¼
XMp

m¼1

AmUmH
ð1Þ
1 ðkmrÞ; Uz ¼

XMp

m¼1

AmWmH
ð1Þ
0 ðkmrÞ; ð44Þ

where ðUT
m;W

T
mÞ

T is the mth right eigenvector corresponding to eigenvalue km;Am is the
amplitude of the mth mode that is to be determined. Eq. (44) gives the displacements at the
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Fig. 4. Vertical load induced vertical displacements for a homogeneous plate when O ¼ 10: (a) x ¼ 2H, (b) x ¼ 10H

(–––, ReðwÞ from hybrid method; - - - -, ImðwÞ from hybrid method; D; ReðwÞ from superposition method; o; ImðwÞ from
superposition method).
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boundary nodes as

qB ¼ GL; ð45Þ

where subscript B denotes the boundary between the interior and exterior regions and

G ¼
U1H

ð1Þ
1 ðk1r0Þ;y;UmH

ð1Þ
1 ðkmr0Þ;y;UMp

H
ð1Þ
1 ðkMp

r0Þ

W1H
1ð Þ
0 ðk1r0Þ;y;WmH

ð1Þ
0 ðkmr0Þ;y;WMp

H
ð1Þ
0 ðkMp

r0Þ

" #
; ð46Þ

with

L ¼ ðA1;y;Am;y;AMp
ÞT: ð47Þ
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Fig. 5. Reciprocity check for a homogeneous plate’s displacement when O ¼ 1: (a) x ¼ 2H, (b) x ¼ 10H (–––, ReðwÞ
due to a horizontal load; - - - -, ImðwÞ due to a horizontal load; D; ReðwÞ due to a vertical load; o; ImðwÞ due to a vertical

load).
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Here, r0 is the radial boundary between the interior and exterior regions. The nodal force vector at
the boundary nodes can be formed as

PB ¼ FL; ð48Þ

where

F ¼
fr1;y; frm;y; frMp

fz1;y; fzm;y; fzMp

" #
: ð49Þ
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Fig. 6. Reciprocity check for a homogeneous plate’s displacement when O ¼ 10: (a) x ¼ 2H, (b) x ¼ 10H (–––, ReðwÞ
due to a horizontal load; - - - -, ImðwÞ due to a horizontal load; D; ReðwÞ due to a vertical load; o; ImðwÞ due to a vertical

load).
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The frm and fzm are generated here by using a consistent load vector formulation. Subscripts r and
z denote the direction of the evaluated force mode vectors.

2.2.2. Finite element model of interior region

The interior region is modelled by employing axisymmetric finite elements. By following the
conventional process of assembling finite elements [23], the minimal energy functional of the
system’s governing equations can be obtained from

d #p ¼ d%qTTSqT � d%qTTPT ¼ 0; ð50Þ
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(a)

Fig. 7. Vertical load induced vertical displacements for a 3-ply laminated plate when O ¼ 1: (a) x ¼ 2H, (b) x ¼ 10H

(–––, ReðwÞ from hybrid method; - - - -, ImðwÞ from hybrid method; D; ReðwÞ from superposition method; o; ImðwÞ from
superposition method).

H. Bai et al. / Journal of Sound and Vibration 269 (2004) 251–271 265



where

qT ¼
qI

qB

( )
; PT ¼

PI

PB

( )
; S ¼ KT � o2MT ¼

SII SIB

SBI SBB

" #
; ð51Þ

and an over bar denotes the conjugate of a complex matrix. In Eq. (51), qI and PI are the nodal
displacement and force vectors corresponding to the interior nodes whereas qB and PB correspond
to the boundary nodes. KT and MT are the global stiffness and mass matrices of the interior
region, respectively.
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Fig. 8. Vertical load induced vertical displacements for a 3-ply laminated plate when O ¼ 10: (a) x ¼ 2H, (b) x ¼ 10H

(–––, ReðwÞ from hybrid method; - - - -, ImðwÞ from hybrid method; D; ReðwÞ from superposition method; o; ImðwÞ from
superposition method).
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2.2.3. Global solution
By imposing continuity conditions for the displacements and tractions on the boundary nodes,

a system of linear algebraic equations can be obtained for the global solution as

%G
T
ðSn

BBG� FÞL ¼ � %G
T
SBIS

�1
II PI ; ð52Þ

where

Sn

BB ¼ SBB � SBIS
�1
II SIB: ð53Þ

Once the Am are evaluated, the axisymmetric Green function can be found by using Eq. (44).
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Fig. 9. Reciprocity check for a 3-ply laminated plate’s displacement when O ¼1: (a) x ¼ 2H, (b) x ¼ 10H (–––, ReðwÞ
due to a horizontal load; - - - -, ImðwÞ due to a horizontal load; D; ReðwÞ due to a vertical load; o; ImðwÞ due to a vertical

load).
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3. Numerical results and discussion

Numerical examples are presented in this section for the displacement Green functions of a
homogeneous isotropic plate as well as a layered plate.

Example 1. A homogeneous isotropic plate with the Poisson ratio n ¼ 1=3 is considered. The
normalized shear modulus m is taken as 1.

Example 2. A 3-ply laminated plate is investigated. It is symmetric about the middle plane. Layers
1 and 3 are at the top ðz ¼ 0Þ and bottom ðz ¼ 2HÞ of the plate, respectively, with layer 2 in the
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Fig. 10. Reciprocity check for a 3-ply laminated plate’s displacement when O ¼ 10: (a) x ¼ 2H, (b) x=10H (–––, ReðwÞ
due to a horizontal load; - - - -, ImðwÞ due to a horizontal load; D; ReðwÞ due to a vertical load; o; ImðwÞ due to a vertical

load).

H. Bai et al. / Journal of Sound and Vibration 269 (2004) 251–271268



middle. The outer layers are assumed to be aluminum that sandwich the middle steel layer. The
material constants and geometric data are given by the Poisson ratio, n; shear modulus, m; mass
density, r; and laminate thicknesses, H: They are taken as

n2 ¼ 0:28; m2 ¼ 75� 109 N=m2; r2 ¼ 7:8� 103 kg=m3;H2 ¼ 1:6H;

n1 ¼ n3 ¼ 0:32; m1 ¼ m3 ¼ 25� 109 N=m2; r1 ¼ r3 ¼ 2:7� 103 kg=m3;H1 ¼ H3 ¼ 0:2H;

where a subscript denotes the corresponding layer. In the numerical results the material constants
mi and riði ¼ 1; 2; 3Þ are normalized by those of the middle layer, respectively.
The normalized frequency O ¼ oH=

ffiffiffiffiffiffiffiffi
m=r

p
is used for Example 1. It is replaced by O ¼

oH=
ffiffiffiffiffiffiffiffiffiffiffiffi
m2=r2

p
for Example 2. The displacements for both the examples are normalized with respect

to H: Two loads are considered for both plates. One corresponds to a vertical load, the other to a
horizontal load in the x direction. These loads act separately at the same location (0, 0, 0.5H).
Axisymmetry about the z-axis holds for the vertical load but not for the horizontal load.
Therefore, the hybrid method, presented here, can be used for the former but not for the latter
situation. However, the plane-wave superposition technique is applicable to both loads. In the
hybrid model, the finite element mesh contains 20 quadratic elements and 85 nodes. The boundary
is located at r0 ¼ 0:2H, as shown in Fig. 2. Forty modes are employed in the wave function
expansion in the exterior region.
Results are given in Figs. 3–6 for Example 1. Fig. 3(a) and (b) compare the vertical

displacement ðwÞ computed through the thickness at sections x ¼ 2H and x ¼ 10H for a
frequency O ¼ 1: The corresponding results are presented in Fig. 4 for O ¼ 10: Both the hybrid
method as well as the plane-wave superposition techniques are used in Figs. 3 and 4. Here, ReðwÞ
and ImðwÞ refer to the real and imaginary part of a complex displacement, respectively. ReðwÞ and
ImðwÞ are almost constant through the thickness in Fig. 3 when O ¼ 1: However, when O is
increased to ten, they oscillate noticeably through the thickness as seen in Fig. 4. Both Figs. 3 and
4 show that the data from the two approaches agree well, especially when x ¼ 10H (i.e., in the far
field).
Figs. 5 and 6 present the vertical displacement distribution through the thicknesses at x ¼ 2H

and 10H when a horizontal x direction load acts at (0, 0, 0.5H). Figs. 5 and 6 correspond to O ¼ 1
and 10; respectively. The dynamic reciprocal identity (Betti–Rayleigh Theorem [24]) is used to
check the validity of the results. For example, in Fig. 5(a) the solid (—) and dashed (- - - -) curves
indicate the vertical displacement through the thickness at x ¼ 2H when a horizontal load acts at
(0,0,0.5H). The distribution was evaluated by using Eq. (36). The same results are recovered by
applying a vertical load at (2H,0,z0) where z0 coincides with one of the ð2N þ 1Þ node points. The
results, shown by circles ðoÞ and triangles ðDÞ in the figure, are calculated with the aid of Eq. (32).
Similar results are presented in Figs. 5(b), 6(a) and (b). From these figures it can be inferred that
satisfaction of the reciprocity relations confirms the correctness of the proposed superposition
algorithm. As observed earlier, the results for O ¼ 10 exhibit an oscillatory behavior.
To demonstrate the versatility of the plane-wave superposition method, the results for the 3-ply

laminated plate of Example 2 are given in Fig. 7–11. The overall behavior of the displacement
distribution is shown to be similar to that of the homogeneous plate considered in Example 1.
Fig. 11 shows the vertical displacement’s variation along the top surface ðz ¼ 0Þ of the plate due

to a vertical point load. Since r ¼ 0 is a singular point of the solution, the results presented here
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apply only for 0:05Hprp10H: A detailed study near r ¼ 0 shows a noticeable jump in the
vertical displacement but these results are not shown for brevity.

4. Conclusions

A plane-wave superposition method is used to compute the three dimensional, steady state
Green function for a laminated plate. It is validated for a vertical load by the invariably close
agreement with independently obtained results from a hybrid finite element method. Such a
validation is not possible with the hybrid modelling presented here for a horizontal load.
However, it is feasible to check the displacement reciprocity relation which is satisfied. Moreover,
the general displacement behavior of the homogeneous and laminated plates considered is shown
to be similar.
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